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A general approach to nonequilibrium quantum statistics 

E. R. PIKE and S. SWAIN 
Royal Radar Establishment, Great Malvern, Worcs, England 
MS. received 19th March 1971, in revisedform 13th April  1971 

Abstract. Direct use of a generalized Laplace transform is proposed for 
applications in nonequilibrium quantum statistics. T h e  method includes the 
equilibrium ‘double-time’ Green’s function method as a special case. 

An example is given in optical theory in which non-Markoffian behaviour 
and Poincark recurrences have been explicitly found. 

1. Introduction 
The method of thermodynamic ‘double-time’ Green’s functions has been very 

successful in dealing with problems in equilibrium statistical physics and linear- 
response theory (Zubarev 1960). Once the Green’s function G ( A ;  23) of two operators 
A and B is known, correlation functions such as 

can be found. Here 
F ( A ;  B )  = (4 t )B(O)  > e ,  (1) 

<x>,q = Tr(p,,x) 
iz ( t )  = exp(iHt) A exp( - iHt) 

the operator A in the Heisenberg representation, p e s  = exp( - pH)/Z ,  the canonical 
density matrix, Z is the partition function 

and 
2 = ?’r[exp( -pH)’, 

where k is Boltzmann’s constant and T is the absolute temperature. I$, the Hamil- 
tonian of the system, is assumed to have no explicit time dependence. In  this paper 
we outline a method of tackling general non-equilibrium problems in statistical 
physics which is closely related to the equilibrium Green’s function method. In  
fact G(A;  B)  can be obtained from this approach and thus one can recover the usual 
results for equilibrium expectation values and linear susceptibilities. In  the non- 
equilibrium situation the method can be used to calculate diagonal elements of the 
density matrix via the generalized master equation, but in general provides a more 
powerful technique than the master equation for direct calculation of quantum 
statistical averages. V‘e demonstrate this in an example which shows non-hlarkoffian 
behaviour and Poincari: recurrences. 

The  method uses generalized Laplace or Fourier transforms (Titchmarsh 1937) 
and for later reference we present the main formulae here. SYe define the generalized 
Laplace transform of a function f(t) to be 

L ( w )  = - i 1: dtf(t)  exp(iwt) 

A j *  

w = ZL + iv v z o  
5 5 5  
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if a sufficiently large 2’ can be found for thc integral to clist. ‘l’hc reciprocal formula is 
1 f 1u 

f(t) = - -- J dw L ( w )  exp( - j u t )  a, t > 0 (3) 
-z2+ia 

for sufficiently large a. The advantage of Laplace transform techniques in quantum 
mechanics are much the same as in, for instance, electrical engineering, namely: 
(i) they convert systems of differential equations into systems of algebraic equations ; 
and (ii) they build boundary conditions into the algebraic equations in a convenient 
manner. 

I n  the next section we outline briefly the thermodynamic double-time Green’s 
function equation of motion technique. In  4 3 me show how more general problems 
in statistical physics can be approached by a closely related but simpler technique 
which makes direct use of the generalized Laplace transform. We also give a simple 
illustrative example. In  the fourth section we apply the technique to a problem in 
optics which has proved difficult and lengthy to solve by other techniques. I n  the 
final section we draw some general conclusions. 

2. The Green’s function technique 
The retarded Green’s function, G:(A; B) ,  of two operators A and B in the 

complex-frequency domain is obtained by applying the transform (2) to the function 

G,(A; B )  = ( [A( t ) ,  B(0)1, >e, (4) 
where [X, Y ] ,  = X Y - 7  I’X, and 77 can have the values I 1. When 7 is + 1 we 
shall speak of Bose Green’s functions, and when 7 = - 1 of Fermi Green’s functions. 
It will be apparent later why one chooses to work with the Laplace transform of the 
77 commutator, rather than that of the correlation function directly. Introducing the 
exact eigenstates la>, the corresponding exact eigenvalues, E ,  of the Hamlitonian 
11 and writing out the trace in (4) explicitly using pCAq we have 

Gt ( A ;  B)  =1 2 - 1  1 (wp(  -FE),)  -7 ~ x } ~ ~ - ~ ~ , ‘ ~ ~ ) ~ ~ ’ ~ ? ~ ~ ~ ~ Z ~ ~ ~ ~  exp(iE,7,1t) (5) 
n. m 

cc 
and 

G:(A; B )  = - i [ dt exp(iwt)G,(A; B)  
C O  

( 6 )  
exp( -PE,) - rl exp( - PEm) = 2-1 2 - A,mBm 11 

n ,m  ( w  + Enm) 
where E,, = E,- Em. 

Using the explicit form of G:(A; B) ,  it is very easy to show that it satisfies the 
equation 

wG5(&  B )  = <[-A, BI,,h?,+G:([A, HI; B)  ( 7 )  
which we shall refer to as the equation of motion for G,”(A; B). When we do not 
depict the time explicitly in an operator in the Heisenberg representation, we mean 
that operator at time zero. Thus ( [ A ;  B]n),q ([A(O), B(0)]n)eq.  G:(A; B )  is 
usually calculated by writing down its equation of motion, then the equation for 
G:([A, H I ;  B) ,  etc., so generating a hierarchy of equations which can be truncated 
by some approximation scheme and so solved for G,”(A; B). We now see the reason 
for introducing the 77 commutator into (4)-it results in our having to calculate the 
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average ([A, B]u),q in (7). Now the 7 commutator of two operators is frequently 
much simpler than the two operators taken alone (in many cases it is one or zero), 
so that the average ([A, B], , )es  can be evaluated much more easily than the average 
(AB),,. However, this device causes a complication when one comes to consider 
the inverse transform (3), as a straightforward application of it would lead to (4), 
and not to (A(t)B(O)) which is normally required. The correct inversion formula 
for the 7-commutator Green’s function is 

G: ( A ;  H) exp( - iwt) 
(A(t)B(O) ),, + (1 4.. 7)) c(au) = - -- d w  t > 0 (8) 

2 r  i P l -qexp(-pw) 

where the contour encloses the real axis. 
The  constant contribution C(AB), which only appears for Bose Green’s functions, 

is the origin of the so-called zero-frequency anomaly (see, for example, Stevens and 
Toombs 1965, Lucas and Horwitz 1969, Kwok and Schultz 1969). I t  arises from 
t h e z e r o o f { l - q e x p ( - p w ) ) a t w  = Owhen7 = +l.  

By substituting from (6) into (S), one sees the need for the (1-7 exp(-pw)) 
factor. The inversion (8) is based implicitly on the Gibb’s weighting provided by 
the use of the canonical density matrix. 

3. The generalized Laplace-transform technique 
When one comes to consider non-equilibrium problems, that is, problems des- 

cribed statistically by an arbitrary density matrix rather than by the canonical density 
matrix p,, = exp( - pH) /Z ,  the situation is different. There are two main types of 
problem : 

(i) When the initial expectation value of some operator is known, and one wishes 
to calculate how it evolves when a perturbation is applied to the system. 

(ii) When one wishes to calculate the steady state (but not equilibrium) value of a 
correlation function (A(t)B(O)) (this is the situation which arises for example in 
considering transport or scattering problems). In  these situations there is no advan- 
tage in using the 17 commutator and we propose to work with the simple products 
A(t) B(O). Hence we define 

L(A,  B )  = - i dt (A(t)B(O) ) exp(iwt) (9 1 1: 
with arbitrary initial p ,  to use instead of the Green’s functions of the previous section. 
Explicitly we find the Laplace transform 

It satisfies the equation of motion 

wL(A; B )  = ( A B ) + L ( [ A ,  H I ;  B ) .  (11) 
(Compare with (7).) The inversion formula (3) is used to recover (A(t) B(O)) once 
L(A ; B )  is known, and of course L(A ; B )  can be calculated in a similar way to that in 
which G,(A; B )  is calculated. We note that in this case the inversion formula 
involves no term corresponding to the zero-frequency anomaly. T o  employ this 
technique we have to know the {AB}  which are the essential parameters of the 
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problem. Replacing ( A B )  with the simpler ([A, B],,)  as is contrived in the double 
time Green's function technique does not work in the non-equilibrium case because 
the former technique requires the density matrix to be explicitly of the Gibb's form. 

In  the first type of problem M here one wishes to follow the time evolution of a 
single operator, A, say, one can define a function L(A) by applying (2) to the quantity 
( A ( f ) ) .  Then L(A)  obeys 

wL(A) = (A , -L ( [A ,  H I )  

and formulae (10) and (1 1) hold also for L(iil) if B is replaced by unity. 
The basic formulae of the thermodynamic Green's function and generalized 

Laplace transform methods are compared in table 1. It should be noted that, in the 
case of thermodynamic equilibrium, the inversion formulae on the last line of the 
table can be made identical, before integration, by simple manipulation using the 
Gibbs form of the density matrix. The  generalized Laplace transform method, 
therefore, includes the double-time Green's function method as a special case. 

T o  demonstrate the technique, we consider as a simple illustrative example a 
system of bosons interacting with a two-level atom through the Hamiltonian 

H = a-a- wg - a+awq +g(u+a+a-a- ) .  (12) 

U +  and a obey the usual commutation rules for Bose operators, and a+ and a- are 
the Pauli operators. The  final term represents the interaction between the atom and 
the field in the so-called rotating wave approximation. For a discussion of this Hamil- 
tonian see, for example, Sears (1964). I t  is relevant to a single phonon interacting 
with a paramagnetic impurity, or a photon interacting with an atom. We suppose 
that there is some external agency (a reservoir) which maintains the operator 
u3 = (.+a- -4) constant on a time scale in which changes in a(t) can occur. Our 
Hamiltonian then describes a boson field interacting with a type of heat bath, as energy 
can be transferred to and from the field without affecting the energy of the atom. 
JVe calculate the mean boson occupation number ( a + ( t ) a ( t ) )  as a function of time 
with a viebv to investigating whether a steady state solution can exist. If the steady 
state can exist, and if we choose our initial conditions suitably, we will find that 
(a-( t )a( t )> will be independent of time. lye  calculate the quantity L(a+a) using (11). 
We find 

wL(a+a)  = ( a - a )  -gL(o-a+ -a.+) (13) 

when we use the fact that u3 is constant and that L(1) = l i w .  We have also assumed 
(U-.-> = (.+a> = 0 for simplicity. With this approximation we can solve the 
system of equations to find 

( a T a  )(U' - wqo2) - 2g2 (a+ a- ) 
L ( a + a )  = 

w( w2 - wqo2 + 4g2 <as >) 

We obtain (a+( t )a( t ) )  from the in-version formula (3) by closing the contour in the 
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lower half plane. Hence 

{ ( a  + a )wqO2 + 2g2 ( U  - U - ) - 2g2(2 (u3 > ( U  + U ) + < D + U - >) COS f i t }  
<a+ ( W t )  = 

( I f )  
wqo2 - 4g2<03 ) 

where C2 = { ~ ~ ~ ~ - 4 g ~ ( ~ ~ ) ) ~ ~ ~  and 4g2(a3) < wqo2. 

we obtain 
T o  investigate whether a steady state exists we put ( a + ( t ) a ( t ) )  = ( a + a )  when 

or 

Hence a steady state does exist, providing that 

( 0 3 )  < 0. 
The  mean boson occupation number is given by (18). Further, suppose that the 
atom can be defined by a temperature T such that 

( o3 > = - $tanh( #coo) /? = l / k T .  

(This follows by assuming a Gibbs distribution for the atomic energy levels). We 
then find 

1 
(20) ________ - 

(fl3) +8 (a fa )  = - ____ - 
2 (U3 > exp(/?%)- 1 

which is just the Bose factor. Thus, under these conditions the steady state is the 
same as the equilibrium state and the atom and field are defined by the same tempera- 
ture. If the inequality (19) does not hold we have the condition for laser action and 
to obtain a steady state additional damping and non-linear terms must be taken into 
account. 

4. A two-level atom interacting with all the modes of the radiation field 
Here we consider a nontrivial example which has been treated recently in detail 

by Davidson and Kozak (1969, 1970) using the Prigogine-Resibois master equation. 
We shall show how to obtain their results much more simply using the generalized 
Laplace transform technique. The model they considered is a two-leyel atom in a 
one-dimensional cavity of length L interacting with all the modes of the radiation 
field. Initially the atom was assumed to be in its excited state, and the probability 
of it still being in its excited state at a later time t was calculated. The  Hamiltonian 
is a generalization of the one considered in the previous section: 

(21) 
+ H = 2 U: aqwq + U +  U -  W O  i- 2 g,(a, 0- +. ,U+)  

4 4 

where g,2 = acw,/L, a is a dimensionless coupling constant, c the velocity of light. 
We wish to calculate ( o + ( t ) ~ _ ( t ) ) ,  which is the probability of the atom being in its 
excited state at time t. It is easy to write down the hierarchy of equations for 
L,(u+u-) using equation (11) and the known commutation relations of the Bose 
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T o  decouple these equations, we assume, in (22) and (24) that 

~(%a:a ,J  1: ww;4L71 

I J ( a ; a 4 2 ( Q o , ~ + ) )  1: -%b,(~,P+ ) ) 8 , , 2  

and in (25), that 

+ wCa,(a, ,U+ ) P O Q 1  - ~ ( a , + a t , a , ~ + ) ~ , , , ~ , q ,  (26) 

This is a reasonable approximation at least in the weak coupling region when one can 
still think of bosons and atoms as separate identities. Now L(a,fa,(a,o+)) is related 
to (n,(t)a,(t)o+(t))  where nq(t)  = n;(t)a,(t) so that if n,  is always small, 

L(a,+a,(a,a+)) 4 L(a,o+). (27 1 
With the stated initial conditions (xq) satisfies the identify X q { n q ( t ) >  5 1, so that 
if the number of modes is large the occupation of any particular mode will be small, 
i.e. (n,(t)> < 1, and (27) holds. A similar argument holds for the other terms in (26), 
and so the final term in (2-5) can be neglected compared w-ith the first term. Hence 
(23), (24) and (25) become 

(U+ w,,)L(&-)  = -g,L(u+o-)-Zg,L(o,a,'a,) (28) 

( U -  uQo)aaQo+) g,L(a+o-)+2gg,L(a,u,+n,) (29) 

WL(o,a;a,) N ~g,L(a ,a+ -a;.-, (30) 
Equations (22), (28), (29) and (30) are then easily solved to give 

Now for an infinite system, ga2 -+ 0 (although X,gq2 # 0) and with the initial con- 
dition (o+u-) = 1, (31) reduces in this limit to 

which is the main result of Davidson and Kozak's paper. The sum on the right hand 
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side is related to one which occurs in the theory of the Lamb shift. For a discussion of 
the inversion of (32), and the physical properties of <q+( t )o - ( t ) ) ,  including Poin- 
car6 recurrences and non-Markoffian behaviour, we refer to Davidson and Kozak 
(1969, 1970). We merely wish to point out here the comparative simplicity of our 
derivation. Furthermore, our result (31), as opposed to (32), also gives the exact 
results for a single mode when L is finite (see for example, Fleck 1967 for a deriva- 
tion of the exact result in this case). It is clear that the generalized Laplace transform 
technique can also be extended in a straightforward manner to give results to higher 
accuracy. I t  is not so easy to do this in the master-equation approach. 

5. Conclusions 
We note the following points in conclusion : 
(i) The  quantity 7 does not appear in the definition of the L-functions so that the 

same definitions suffices for both fermions and bosons. 
(ii) Having solved for L(A; B )  by the equation of motion method one finds it to 

be a function of several of the initial average values such as (AB) .  Normally only 
a few such averages are required, and this demonstrates the economy of the method; 
only those initial conditions m hich are relevant to the problem in hand and the level 
of approximation required are introduced. One does not need an explicit knowledge 
of the density matrix. Contrast this with the master equation approach where one 
has to use the initial elements of the density matrix to determine the density matrix at 
time t ,  and then perform a trace with the operator whose mean value is wanted. One 
is reminded of the approach of Fano (1957) who regards the density matrix as being 
defined by the average values of a sufficient number of suitably chosen operators, 
rather than directly by the density matrix elements themselves. In  this sense one 
retains only the relevant density matrix elements in the generalized Laplace transform 
method. 

(iii) By comparing the equations of motion for G,  and L (equations (7) and (11)) 
one sees they differ only in that ( [ A ,  B ] ) e q  in (7) is replaced by ( A B )  in (11). 
Thus one can obtain G ,  from L by replacing average values whenever they occur by 
the corresponding 7-commutator average. (It is not so easy to obtain L from G ,  
simply because the commutators ( [A ,  B] n)eq are frequently one or zero). 

(iv) There is no zero-frequency anomaly in the generalized Laplace transform 
approach because all the singularities in the inversion formula integrand arise from 
the L-function itself unlike the case of the Bose Green's function. 

(v) In  the steady-state case, the quasi-particle energies and damping can be ob- 
tained from the poles of a suitable L-function, just as is frequently done in the 
equilbrium case from the poles of the relevant Green's function. 

(vi) If one wishes to calculate the density matrix elements, one could do this by 
calculating L for the projection operator I s t ) ( r l / .  For 

A similar approach was taken by Pike (1965) who derived a generalized master equation 
using projection operators and equation of motion techniques closely related to the 
ones described here. 
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